ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего образования

«Петербургский государственный университет путей сообщения Императора Александра I» (ФГБОУ ВО ПГУПС)

Кафедра «Электрическая тяга»

РАБОЧАЯ ПРОГРАММА

дисциплины
«МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ» (Б1.В.ДВ.3.1)
для специальности
23.05.03 «Подвижной состав железных дорог»
по специализации
«Высокоскоростной наземный транспорт»

Форма обучения – очная

Санкт-Петербург 2016

«Электрическая тяга»
Протокол № <u>4</u> от « <u>25</u> » <u>апреля</u> 201 <u>4</u> г.
Программа актуализирована и продлена на $201 \underline{\cancel{4}}/201 \underline{\cancel{8}}$ учебный год (приложение).
Заведующий кафедрой «Электрическая тяга»
« <u>25</u> » апрелея 201 <u>4</u> г А.М. Евстафьев
Рабочая программа рассмотрена и обсуждена на заседании кафедры «Электрическая тяга»
Протокол № <u>1</u> от « <u>29</u> » <u>августа</u> 201 <u>4</u> г.
Программа актуализирована и продлена на 201 <u>4</u> /201 <u>8</u> учебный год (приложение).
Заведующий кафедрой «Электрическая тяга»
« <u>19</u> » авуста 201 <u>4</u> г А.М. Евстафьев
Рабочая программа рассмотрена и обсуждена на заседании кафедры «Электрическая тяга»
Протокол № от «»201 г.
Программа актуализирована и продлена на 201_/201_ учебный год (приложение).
Заведующий кафедрой «Электрическая тяга»
«» А.М. Евстафьев

Рабочая программа рассмотрена и обсуждена на заседании кафедры

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа рассмотрена, обсуждена на заседании кафедры «Электрическая тяга» Протокол № $\underline{\mathcal{S}}$ от « $\underline{22}$ » $\underline{\mu}$ от « $\underline{22}$ » $\underline{2016}$ г.

Заведующий кафедрой «Электрическая тяга» «22» <u>коморя</u> 201<u>6</u> г.

А.М. Евстафьев

СОГЛАСОВАНО

Руководитель ОПОП (22)» <u>можбря</u> 2016 г.

А.М. Евстафьев

Председатель методической комиссии факультета «Транспортные и энергетические системы»

«22» моноря 2016 г.

В.В. Никитин

1. Цели и задачи дисциплины

Рабочая программа составлена в соответствии с ФГОС ВО, утвержденным «17» октября 2016 г., приказ № 1295 по специальности 23.05.03 «Подвижной состав железных дорог», по дисциплине «Микропроцессорные системы управления».

Целью изучения дисциплины "Микропроцессорные системы управления" является приобретение совокупности знаний, умений и навыков необходимых для решения вопросов разработки, эксплуатации и ремонта микропроцессорных систем управления электроподвижным составом (ЭПС).

Для достижения поставленных целей решаются следующие задачи:

- изучение теории проектирования узлов и элементов микропроцессорных систем управления;
- изучение способов организации вычислений и управления на базе современных микропроцессорных и микроконтроллерных средств;
- изучение современных аппаратных и программных средств автоматизированного проектирования микропроцессорных систем;
- изучение устройства и алгоритмов функционирования микропроцессорных систем управления ЭПС;
- изучение методов проектирования, эксплуатации и обслуживания микропроцессорных систем управления ЭПС.

2. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения основной профессиональной образовательной программы

Планируемыми результатами обучения по дисциплине являются: приобретение знаний, умений, навыков и/или опыта деятельности.

В результате освоения дисциплины обучающийся должен:

ЗНАТЬ:

- типовые микропроцессорные системы;
- методы и способы разработки программного обеспечения для встраиваемых систем;
- принцип функционирования и алгоритмы работы микропроцессорных систем управления ЭПС.

УМЕТЬ:

- проектировать цифровые управления на базе микропроцессоров;
- проектировать программное обеспечение для микропроцессорных систем управления;
- осуществлять диагностику и выявлять возможные неисправности электронных элементов микропроцессорных систем управления;
- эксплуатировать и обслуживать современные микропроцессорные системы управления ЭПС.

ВЛАДЕТЬ:

 методами расчета и проектирования микропроцессорных систем управления, а также методами рациональной эксплуатации, технического обслуживания и ремонта элементов микропроцессорных систем управления ЭПС, понятийно-терминологическим аппаратом.

Приобретенные знания, умения, навыки и/или опыт деятельности, характеризующие формирование компетенций, осваиваемые в данной дисциплине, позволяют решать профессиональные задачи, приведенные в соответствующем перечне по видам профессиональной деятельности в п. 2.4 основной профессиональной образовательной программы (ОПОП).

Изучение дисциплины направлено на формирование следующих **об- щепрофессиональных компетенций (ОПК)**:

- способностью применять полученные знания для разработки и внедрения технологических процессов, технологического оборудования и технологической оснастки, средств автоматизации и механизации (ОПК-11);
- владением основами расчета и проектирования элементов и устройств различных физических принципов действия (ОПК-13);

Изучение дисциплины направлено на формирование следующих **профессиональных компетенций (ПК)**, соответствующих виду профессиональной деятельности, на который ориентирована программа специалитета:

готовностью к организации проектирования подвижного состава, способностью разрабатывать кинематические схемы машин и механизмов, определять параметры их силовых приводов, подбирать электрические машины для типовых механизмов и машин, обосновывать выбор типовых передаточных механизмов к конкретным машинам, владением основами механики и методами выбора мощности, элементной базы и режима работы электропривода технологических установок, владением технологиями разработки конструкторской документации, эскизных, технических и рабочих проектов элементов подвижного состава и машин, нормативнотехнических документов с использованием компьютерных технологий (ПК-18);

Область профессиональной деятельности обучающихся, освоивших данную дисциплину, приведена в п. 2.1 ОПОП.

Объекты профессиональной деятельности обучающихся, освоивших данную дисциплину, приведены в п. 2.2 ОПОП.

3. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина «Микропроцессорные системы управления» (Б1.В.ДВ.3.1) относится к вариативной части профессионального цикла и является дисциплиной по выбору обучающегося.

4. Объем дисциплины и виды учебной работы

Для очной формы обучения:

	D	Семестр		
Вид учебной работы	Всего часов	9	•••	•••
Контактная работа (по видам учебных за-	54	54		
нятий)		2		
В том числе:	"			
– лекции (Л)	36	36	10.	
– практические занятия (ПЗ)	-	- "		
 лабораторные работы (ЛР) 	18	18		
Самостоятельная работа (СРС) (всего)	54	54		
Контроль	-	-		
Форма контроля знаний	3	3		
Общая трудоемкость: час / з.е.	108/3	108/3		

5. Содержание и структура дисциплины

5.1 Содержание дисциплины

№ п/п	Наименование разде- ла дисциплины	Содержание раздела
1.	Системы счисления.	- системы счисления;
	Логические элементы и	- логические операции;
	модули.	- логические модули.
2.	Назначение и область	- этапы развития систем управления;
	применения микропро-	- область применения микропроцессорных
	цессорных устройств	систем на транспорте.
3.	Введение в микропро-	 классификация микропроцессоров;
	цессорную технику	- основные определения.
4.	Элементы микропро-	- память микропроцессорных устройств;
	цессорной техники	- аналого-цифровые преобразователи;

		 цифро-аналоговые преобразователи. 	
5.	Однокристальные мик-	- устройство однокристальных микро-	
	роконтроллеры	контроллеров на примере AVR.	
6.	Микропроцессорная	- режимы работы силовой цепи;	
	система управления и	- система управления и диагностик элек-	
	диагностики электро-	тровоза ЭП10.	
	воза ЭП10		
7.	Система управления и	- конфигурация train control network;	
	диагностики электро-	 центральный блок управления; 	
	поезда «Сапсан», «Ал-	 блок управления приводом. 	
	легро»		

5.2 Разделы дисциплины и виды занятий

Для очной формы обучения:

№ п/п	Наименование раздела дисциплины	Л	ПЗ	ЛР	CPC
1	Системы счисления. Логические элементы и модули.	4	-	2	8
2	Назначение и область применения микропроцессорных устройств	2	- '	4	8
3	Введение в микропроцессорную технику	4	-	2	8
4	Элементы микропроцессорной техники	6	-	4	8
5	Однокристальные микроконтроллеры	8	-	2	8
6	Микропроцессорная система управления и диагностики электровоза ЭП10	4	-	2	6
7	Система управления и диагностики электропоезда «Сапсан», «Аллегро»	8	-	2	8
	Итого	36	-	18	54

6. Перечень учебно-методического обеспечения для самостоятель-

ной работы обучающихся по дисциплине

№	Наименование раздела	Перечень учебно-методического		
п/п	F	обеспечения		
1.	Системы счисления. Логические элементы и модули.	Цифровая обработка сигналов в LabVIEW: учеб. пособие / под ред. В. П. Федосова. – М.: ДМК Пресс,		
2.	Назначение и область применения микропроцессорных устройств	2007. – 456 с. С помощью сети Интернет обучающий имеет доступ к офици-		
3.	Введение в микропроцессорную технику	альным сайтам разработчиков со следующей информацией:		
4.	Элементы микропроцессорной техники	1. Руководство по эксплуатации электровоза ЭП10 2. Перечень сайтов:		
5.	Однокристальные микроконтроллеры	http://www.nevz.com/ http://www.kolomnadiesel.com/ http://www.sinara-group.com/		
6.	Микропроцессорная система управления и диагностики электровоза ЭП10	ntip####################################		
7.	Система управления и диагностики электропоезда «Сапсан», «Аллегро»			

7. Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств по дисциплине является неотъемлемой частью рабочей программы и представлен отдельным документом, рассмотренным на заседании кафедры и утвержденным заведующим кафедрой.

8. Перечень основной и дополнительной учебной литературы, нормативно-правовой документации и других изданий, необходимых для освоения дисциплины

- 8.1. Перечень основной учебной литературы, необходимой для освоения дисциплины
- 1. Якушев, А.Я. Автоматизированные системы управления электрическим подвижным составом: учебное пособие. [Электронный ресурс] Электрон. дан. М.: УМЦ ЖДТ, 2016. 302 с. Режим доступа: http://e.lanbook.com/book/90908 Загл. с экрана.
- 2. Ширяев А.В. и пр. Высокоскоростные поезда «Сапсан» В1 и В2. Учебное пособие. 2013
- 3. Хартов В.Я. Микропроцессорные системы управления. М.: Академия, 2010

- 4. Григорьев, В.В. Микропроцессорные системы управления / В.В. Григорьев, С.В. Быстров, В.В. Бойков [и др.]. Спб. : СПбНИУ ИТМО (Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики), 2011. 134 с.
- 5. Савин, А.А. Цифровые устройства и микропроцессоры. М.: ТУ-СУР (Томский государственный университет систем управления и радиоэлектроники), 2012. 12 с.
- 8.2. Перечень дополнительной учебной литературы, необходимой для освоения дисциплины
- 1.Белов А.В. Разработка устройств на микроконтроллерах AVR. М.: Наука и Техника. 2013
- 2. Русанов В.В. Микропроцессорные устройства и системы / В.В. Русанов, М.Ю. Шевелев. М.: ТУСУР (Томский государственный университет систем управления и радиоэлектроники), 2012. 183 с.
- 3. Система управления и диагностики электровоза ЭП10. Под. ред. Покровского С.В. М.: Интекст, 2009
- 4. Цифровая обработка сигналов в LabVIEW: учеб. пособие / под ред. В. П. Федосова. М.: ДМК Пресс, 2007. 456 с.
- 5. Густав Олссон, Джангуидо Пиани. Цифровые системы автоматизации и управления. – СПб.: Невский Диалект, 2001.-557с.:ил.
- 7. Система управления и диагностики электровоза ЭП10 / Под ред. С. В. Покровского. М.: Интекст, 2009. 356 с.
 - 8.3 Другие издания, необходимые для освоения дисциплины. При освоении данной дисциплины другие издания не используется.

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Личный кабинет обучающегося и электронная информационнообразовательная среда. [Электронный ресурс]. — Режим доступа: http://sdo.pgups.ru/ (для доступа к полнотекстовым документам требуется авторизация).
- 2. Электронно-библиотечная система «Лань». [Электронный ресурс].— Режим доступа: http://e.lanbook.com/

10. Методические указания для обучающихся по освоению дисциплины

Порядок изучения дисциплины следующий:

1. Освоение разделов дисциплины производится в порядке, приведенном в разделе 5 «Содержание и структура дисциплины». Обучающийся должен освоить все разделы дисциплины с помощью учебно-методического обеспечения, приведенного в разделах 6, 8 и 9 рабочей программы.

- 2. Для формирования компетенций обучающийся должен представить выполненные типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, предусмотренные текущим контролем (см. фонд оценочных средств по дисциплине).
- 3. По итогам текущего контроля по дисциплине, обучающийся должен пройти промежуточную аттестацию (см. фонд оценочных средств по дисциплине).

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине:

- технические средства (компьютерная техника и средства связи (персональные компьютеры, проектор, интерактивная доска, видеокамеры, акустическая система и т.д.);
- методы обучения с использованием информационных технологий (компьютерное тестирование, демонстрация мультимедийных материалов, компьютерный лабораторный практикум и т.д.);
- перечень Интернет-сервисов и электронных ресурсов (поисковые системы, электронная почта, профессиональные, тематические чаты и форумы, системы аудио и видео конференций, онлайн-энциклопедии и справочники, электронные учебные и учебно-методические материалы).

Дисциплина обеспечена необходимым комплектом лицензионного программного обеспечения, установленного на технических средствах, размещенных в специальных помещениях и помещениях для самостоятельной работы.

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Материально-техническая база обеспечивает проведение всех видов учебных занятий, предусмотренных учебным планом по данному направлению и соответствует действующим санитарным и противопожарным нормам и правилам.

Она содержит:

– помещения для проведения лекционных и практических занятий (занятий семинарского типа), курсового проектирования, укомплектованных специализированной учебной мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (настенным экраном с дистанционным управлением, маркерной доской, счи-

тывающим устройством для передачи информации в компьютер, мультимедийным проектором и другими информационно-демонстрационными средствами). В случае отсутствия в аудитории технических средств обучения для предоставления учебной информации используется переносной проектор и маркерная доска (стена). Для проведения занятий лекционного типа используются учебно-наглядные материалы в виде презентаций, которые обеспечивают тематические иллюстрации в соответствии с рабочей программой дисциплины;

- помещения для проведения групповых и индивидуальных консультаций;
- помещения для проведения текущего контроля и промежуточной аттестации;
- помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети "Интернет" с обеспечением доступа в электронную информационно-образовательную среду.

Разработчик программы:

«17» начбая 2016 г.

И.П. Викулов